
Appendix A
Proofs

Here, we provide the proof of each mathematical claim in
the paper, plus a short explanation of how each claim is useful.

First, we examine the structure of the JRS zonotope repre-
sentation. This structure enables the creation of fully-k-sliceable
generators when we use the JRS to produce rotatotopes. That
is, this lemma enables us to slice the arm’s RS to find subsets
corresponding to particular trajectory parameters.

Lemma 2. There exist Ji : NT ! P(R2 ⇥ K) that overap-
proximate Ji as in (9) such that, for each t 2 T, Ji(t) has
only one generator with a nonzero element, equal to �kv

i , in
the dimension corresponding to kv

i , and only one (distinct)
generator with a nonzero element, �ka

i , for ka
i .

Proof: Given Ji(0), the subsequent zonotope Ji(�t) is
computed as Ji(�t) = eF�T Ji(0) + E, where F is found by
linearizing the dynamics (5) at t = 0 and E is a set that
overapproximates the linearization error and the states reached
over the interval [0,�t] [26, Section 3.4.1]. This linearized
forward-integration and error-bounding procedure is applied
to Ji(�t) to produce Ji(2�t), and so on, to compute all Ji(t)
in (9). Since k̇ = 0, we have that eF�g̃v

i equals g̃v
i in the k

dimensions (and therefore each gv
i (t) does as well, and similarly

for ga
i (t)). Since the zero dynamics have no linearization error,

one can define E to have zero volume in the k dimensions
[26, Proposition 3.7], meaning no generator of any Ji(t) has a
nonzero element in the k dimensions, except for gv

i (t) and ga
i (t)

(which are defined with such nonzero elements).
We now note that all rotation matrices are contained in the

matrix zonotopes Mi(t), which are produced by slicing and
reshaping the JRS zonotopes. This enables us to conservatively
approximate the forward occupancy map.

Lemma 3. For any parameterized trajectory q : T ! Q with
kv

i =
˙̃q, every Ri(qi(t;k)) 2 Mi(t).

Proof: By [26, Thm. 3.3 and Prop. 3.7], all values attained
by the sines and cosines of the joint angles are contained in
each Ji(t). By Alg. 1 and (11), each S i(t) only contains the
values of sine and cosine of q(t;k) for which kv

i =
˙̃q. Since

Mi(t) only reshapes S i(t), the proof is complete.
The following lemma confirms that the product of multi-

ple matrix zonotopes times a zonotope is still a rotatotope.
This is necessary to overapproximate the forward occupancy
map, wherein the arm’s joint rotation matrices are multiplied
together (and, analogously, the matrix zonotopes are multiplied
together).

Lemma 5. A matrix zonotope times a rotatotope is a rotatotope.

Proof: This follows from the rotatotope definition.
We use the Minkowski sums of zonotopes and rotatotopes

to enable stacking, which is how we build an RS of the
entire arm from the low-dimensional JRSs. We also use the
Minkowski sum to dilate obstacles, which is necessary to check
for intersection with our arm’s RS per Lem. 8 (which we do

not prove here, as it is proven in [29]).

Lemma 6 (Minkowski sum of zonotopes and rotatotopes).
Consider two zonotopes X = (x,gi

X , h⇣ii)n and Y = (y,g j
Y , h ji)m.

Then X�Y = (x+y, {gi
X ,g

j
Y }, {h⇣ii, h ji})i=n, j=m

i=1, j=1 , which is a zono-
tope centered at x+y with all the generators and indeterminates
of both X and Y. Similarly, for two rotatotopes, V = (v,gi

V , hµii)n

and W = (w,g j
W , h! ji)m),

V �W =
⇣
v+w, {gi

V ,g
j
W }, {hµii, h! ji}

⌘i=n, j=m

i=1, j=1
. (15)

Proof: This follows from the zonotope definition (7) and
rotatotope definition (Def. 4).

The following lemma confirms that the sliced and stacked
rotatotopes Vi(t) overapproximate the forward occupancy map
FO for each ith link.

Lemma 7. For any t 2 T and k 2 K, FOi(q(t;k)) ✓ Vi(t), where

Vi(t) =
M

j<i

 Y

n j
Mn(t) {l j}

!
�

0
BBBBBB@
Y

ni
Mn(t)Li

1
CCCCCCA ⇢W. (16)

Proof: First, note (16) is defined analogously to (1). We
have Ri(qi(t;k)) 2 Mi(t) from Lem. 3. The product of matrix
zonotopes multiplied by a zonotope is a rotatope by Def.
4, and the Minkowski sum of rotatotopes are given exactly
using Lem. 6. Therefore, all sets and operations in (16) are
exact or conservative (note, we can overapproximate Li with a
zonotope), so FOi(q(t;k)) ✓ Vi(t).

We use this next lemma to overapproximate the swept
volume of the arm (represented with rotatotopes); the over-
approximation means that ARMTD is provably conservative,
which enables safety guarantees.

Lemma 9. Any rotatotope MZ as in (13) can be overapproxi-
mated by a zonotope.

Proof: Consider the components of the indeterminate coef-
ficients of MZ = (x,gr, h�ri)s that can be written as h�i� ji. When
evaluated, �i� j 2 [�1,1]. Consider a zonotope Ẑ = (x,gr, h�ri)s

with the same center and generators as MZ, but where each
product h�i� ji is replaced with a single new symbolic coe�-
cient h�ri. If z 2 MZ, 9 �r 2 [�1,1] such that z 2 Ẑ.

The following lemma confirms that our unsafe set represen-
tation (the function hobs) is conservative.

Lemma 10. If ka 2 Kobs, then there exists i 2 N, t 2 T, and
O 2 O such that hobs(i, t,O,ka) � 0.

Proof: This follows from Lems. 7 and 8; hobs is positive
when the zonotope produced by slicing Vi(t) intersects O, and
Vi(t) provably contains all points in workspace reachable by
the arm under the trajectory parameterized by ka.

The following theorem, the main result in this paper, con-
firms that feasible parameters for the constraints we generate
are collision free and obey joint limits. Note, we consider self-
intersection below, in Appx. C.

Theorem 11. Any feasible solution to (24) parameterizes a
trajectory that is collision-free and obeys joint limits over the
time horizon T .



Fig. 4: The set of seven Hard Scenarios (number in the top left), with start pose shown in purple and goal pose shown in green. There are seven tasks in the
Hard Scenarios set: (1) from below to above a table, (2) from one side of a wall to another, (3) between two vertical posts, (4) from one set of shelves to
another, (5) from inside to outside of a box on the ground, (6) from a sink to a cupboard, (7) through a small window.

Proof: The conservatism of hobs follows from Lem. 9,
since each Ji(t) is conservatively transformed into Vi(t); hlim
is conservative by construction.

Appendix B
Safe Receding-Horizon Planning

ARMTD uses Alg. 3 at each planning iteration. Recall that,
without loss of generality, each iteration generates a plan over
the time horizon T = [0, tf] (by shifting the current time to 0).
Also recall, at each iteration, we allot tplan s within which to
find a new plan. The initial position and velocity of each joint
in each iteration is the position and velocity, at time tplan, of
the trajectory plan of the previous iteration. ARMTD attempts
to find a safe trajectory within tplan by optimizing over a set of
safe trajectory parameters; Thm. 11 ensures that any feasible
solution is actually collision-free. If no safe trajectory is found
within the allotted time, the arm executes the braking maneuver
specified by the previous safe trajectory. Assuming the arm
does not start in collision, this algorithm ensures that the arm
is always safe (see [13, Remark 70] or [11, Theorem 1]).

Appendix C
Self-Intersection Constraints

Typical arms must avoid self-intersection between their links.
We specify Iself ⇢ N2 as a set of joint index pairs for which
the links can intersect. That is, for (i, j) 2 Iself, there exist q 2 Q
such that FOi(q)\FO j(q), ;. For example, one may have Iself =
{(1,3), (1,4), (2,4)} for an arm with 4 links and three possible
self-intersections.

We represent self-intersection constraints similarly to how we
represent collision-avoidance constraints, with a function hself :
N⇥N⇥T ⇥Ka! R. Suppose (i, j) 2 Iself ⇢N2 indexes a pair of

links that could intersect, whose volume is overapproximated
by Vi(t) and V j(t). In analogy to (19), define

Vself(i, j, t) = Vi,slc(t)� (�V j,slc(t)) and (25)
Vbuf(i, j, t) = Vi,buf(t)�V j,buf(t), (26)

where �V j,slc(t) means the center and generators are multiplied
by �1. Let Aself(i, j, t) and bself(i, j, t) return the half-space
representation of Vbuf(i, j, t). Then, using ⇤ in place of the
arguments (i, j, t) for space,

hself(⇤,ka) = �max
�
Aself(⇤)eval(Vself(⇤),ka)�bself(⇤)

�
. (27)

As with hobs, hself is a max of a linear combination of
polynomials in ka, so we can take the subgradient with respect
to ka. Note one can prove a similar result to Lem. 10 for hself.

With these self-intersection constraints, we again implement
(23) as a nonlinear program, denoted optTraj in Alg. 3.

argmin
ka2Ka

f (ka)

s.t. hobs(i, t,O,ka) < 0 8 i 2 {1, · · · ,nq}, t 2 T, O 2 O

hself(i, j, t,ka) < 0 8 (i, j) 2 Iself, t 2 T
hlim(ka) < 0 8 i 2 {1, · · · ,nq}.

(28)

Appendix D
Additional Explanations

A. Forward Occupancy Example
For an arm with nq > 2, FOi as in 1 can be written:

FOi(q) =
(

R1(q1)l1+R1(q1)R2(q2)l2+ · · ·

· · ·+
Y

j(i�1)
R j(q j)li�1

)
�

0
BBBBBBB@
Y

ji
R j(q j)Li

1
CCCCCCCA .

(29)



Notice that in this example, the rotated link volume of the ith
given by

⇣Q
ji R j(q j)Li

⌘
is ”stacked” on top of the sum of the

positions of all predecessor joints.

B. Slicing

ARMTD uses zonotopes and rotatotopes to represent RSs
of parameterized trajectories of an arm. In Sec. IV, our tra-
jectory optimization implementation requires obtaining subsets
of the RS corresponding to a particular choice of trajectory
parameters. We call this operation slicing, because it takes in a
zono/rotatotope, evaluates some (or all) of its coe�cients, and
returns a zono/rotatotope that is a subset of the original with
potentially fewer (or no) generators.

We define the slice function in Alg. 1 using indeterminate
evaluation and removal. This function takes in a zono/rotatotope
Z = (x,gi, h�ii)p, a set of indeterminate coe�cients {h� ji}mj=1,
and a set of values for the indeterminate coe�cients {� j}mj=1,
and outputs a sliced zono/rotatotope. For each generator in
Z, if h� ji is a factor of that generator’s coe�cients (as in
(14)), then the generator is multiplied by the value � j. If
a generator becomes fully-sliced (and therefore has no more
indeterminate coe�cients), it is added to the center of the output
zono/rotatotope, and removed from the set of generators. For
zonotopes, each generator becomes fully-sliced if its coe�cient
is evaluated because each coe�cient has only one factor. If a
rotatotope is sliced until each generator has only one coe�cient
factor, the rotatotope becomes a zonotope.

To understand slicing, consider a particular choice of the
trajectory parameter kv

i , as in (11). We want to obtain the subset
of the JRS representing reachable joint angles corresponding
to this particular trajectory parameter. For each Ji(t), only the
generator gv

i (t) is non-zero in the dimension corresponding to
this trajectory parameter, meaning this kv-sliceable generator
is solely responsible for the volume of the reachable set in
this dimension. Choosing a particular value of the trajectory
parameter means fixing this generator’s indeterminate hv

i (t)i to
a particular value. Since the kv-sliceable generator is (generally)
non-zero in the cosine and sine dimensions as well, the slicing
operation returns a subset of the JRS in those dimensions
(that is, by fixing the value of this indeterminate, we do not
lose all of the JRS’s volume in the cosine/sine dimensions,
whereas the volume in the k-dimensions goes to zero). For
example, slice

⇣
Ji(t),

n
hv

i (t)i
o
,
n
⇡
6

o⌘
returns the subset of Ji(t)

corresponding to setting kv
i =

⇡
6 rad/s (provided that ⇡

6 2 Kv
i ).

C. Matrix Zonotope Example

This example constructs Mi(t) from S i(t) by reshaping the
center and generators. Suppose joint i rotates about the 3-axis

of link i�1. Then:, by [5, (3.39)], we have

Mi(t) = Ri(q̃i)
⇣
Xv

i (t),
n
Ga

i (t),G j
i (t)

o
,
n
ha

i (t)i, h� j
i (t)i

o⌘p(t)
, (30)

Xv
i (t) =

2
666666664

cv
i �sv

i 0
sv

i cv
i 0

0 0 1

3
777777775 , Ga

i (t) =

2
666666664

ca
i �sa

i 0
sa

i ca
i 0

0 0 0

3
777777775 , (31)

G j
i (t) =

2
6666666664

c j
i �s j

i 0
s j

i c j
i 0

0 0 0

3
7777777775
. (32)

Since each S i(t) is computed assuming qi(0;k) = 0, we include
Ri(q̃i) when constructing Mi(t) to correct for each initial joint
angle. For di↵erent joint axes, Mi(t) can be constructed accord-
ingly [5, Chapter 3.2.3].

D. Reduction of Generators
Creating the rotatotopes Vi(t) in (16) requires multiplying

generators together and storing their product. For example,
a matrix zonotope described by 10 matrices (a center and 9
generators) multiplied by a zonotope described 2 vectors (a
center and 1 generator) yields a rotatotope described by 20
vectors (a center and 19 generators). Because this process is
repeated for each joint, the number of generators theoretically
required to represent each rotatotope grows exponentially with
the number of joints. In practice, many of these generators are
very small, and their e↵ect can be overapproximated without
adding much conservatism to the RS.

We conservatively approximate (16) by reducing the number
of generators after each product, with a reduce function
implemented as in [26, Proposition 2.2 and Heuristic 2.1]. The
reduce function keeps the largest nred generators according to
a user-defined metric (we used the L2-norm), then overapprox-
imates the rest of the generators with an axis-aligned box. This
ensures the number of rotatotope generators never exceeds a
user-specified size. From Lem. 2, each Mi(t) has ka-sliceable
generators. If a ka-sliceable generator is chosen for reduction,
we no longer consider it ka-sliceable. This is a conservative
approach, because slicing reduces the volume of a rotatotope
in Alg. 1. A generator that is no longer ka-sliceable cannot
decrease the volume of the RS for any choice of ka.

E. Hard Scenarios
The set of Hard Scenarios is shown in Fig. 4.

F. Design Choices and Hyperparameters
ARMTD has several design choices and hyperparameters,

all of which can impact the time required for online planning,
but none of which impact the strict safety guarantees. That is,
ARMTD guarantees safety independent of design choices.

The first design choice to consider is the trajectory pa-
rameterization. While we provide a generic definition (Def.
1), we find that parameterizing velocities and accelerations
in our implementation provides a physical intuition for the
planned trajectories. For future work, we plan to explore other
parameterizations that provide, for example, smoother motion
profiles.



The next design choice to consider are those that define
the user-specified cost function, generated at each receding-
horizon planning iteration. A more non-convex cost function
can slow down online planning. In this work, we generate
the cost function by using a high-level planner (HLP) such
as an RRT* to generate waypoints between the robot’s current
location and the global goal. Importantly, the waypoints need
not be collision-free; they are used to create a cost function
that rewards reaching the waypoint, but ARMTD’s safety con-
straints take care of collision-avoidance. Therefore, ARMTD
provides a safety layer on top of RRT* or any other HLP
(e.g., PRM, or simply picking a waypoint along a straight-line
between the robot and the goal).

There are two hyperparameters that determine a tradeo↵
between conservatism and online planning speed (without im-
pacting safety). The first is the density of the time partition for
the JRS. That is, if we partition time more finely to generate
the zonotope JRS, then it takes longer to generate and evaluate
constraints at runtime (because we have to consider more
zonotopes), but the JRS is also less conservative (so, the robot
has more free space to move through).

The second hyperparameter is the range of parameters in
the trajectory parameterization. A larger range produces a
more conservative JRS, because the same number of zonotopes
(determined by the time partition) must contain a larger range
of joint angles achieved by all parameterized trajectories. We
mitigate this problem in practice by precomputing many JRSs
(in this work, we used 400), each of which has a narrow
range of initial velocity parameters Kv

i . We choose the range of
acceleration parameters Ka

i to vary with the velocity parameters,
so that at higher speeds, there is a larger range of available
control actions. This reduces conservatism at lower speeds so
that ARMTD can maneuver tightly around obstacles.

Note, each JRS only takes around 1 s to compute, since it is
only for a single joint, and for the low-dimensional cosine/sine
dynamics. At runtime, to construct the RS of the entire arm,
we first select the JRS (for each joint) containing the current
initial velocity within its narrow range. Then, we slice by the
exact initial velocity to produce the RS, and the corresponding
collision-avoidance constraints.

G. Seeding CHOMP with RRT*

CHOMP performs better when seeded with a path output by
RRT*, as opposed to the default straight-line initialization [6],
[34]. Given that ARMTD uses RRT* to generate waypoints
at each receding-horizon planning iteration, one may wonder
why we do not use the same RRT* to seed CHOMP. However,
ARMTD and CHOMP use RRT* in fundamentally di↵erent
ways. ARMTD plans in a receding-horizon way, so its runtime
and safety guarantees are not dependent on the RRT* output.
On the other hand, CHOMP would require the RRT* to run for
some (unknown) duration, then perform trajectory optimization.
In other words, CHOMP requires additional planning time for
seeding, whereas ARMTD does not. So, in terms of the most
important metric in this work (finding a collision-free trajectory

in under tplan = 0.5 s), it is unclear how much time to dedicate
for RRT* and how much for CHOMP.

The challenge of generating a fair comparison is com-
pounded by the fact that ARMTD does not require the output
of the RRT* to be collision-free. One could potentially use
CHOMP in a receding-horizon way, by attempting to reach
an intermediate waypoint generated by RRT* in each planning
iteration. But, the available open-source CHOMP implemen-
tation (via MoveIt! [34]) requires the goal (i.e., intermediate
waypoint) to be collision-free. Implementing CHOMP in a
more generalized receding-horizon framework is outside the
scope of the present work.

References
[1] F. Pfei↵er and R. Johanni, “A concept for manipulator tra-

jectory planning,” IEEE Journal on Robotics and Automation,
vol. 3, no. 2, pp. 115–123, Apr. 1987.

[2] T. Kunz and M. Stilman, “Time-Optimal Trajectory Generation
for Path Following with Bounded Acceleration and Velocity,”
in Robotics: Science and Systems, 2012.

[3] S. M. LaValle and J. J. Ku↵ner Jr., “Randomized kinodynamic
planning,” The International Journal of Robotics Research,
vol. 20, no. 5, pp. 378–400, 2001.

[4] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional
configuration spaces,” IEEE transactions on Robotics and
Automation, vol. 12, no. 4, pp. 566–580, 1996.

[5] S. M. LaValle, Planning Algorithms. New York, NY, USA:
Cambridge University Press, 2006.

[6] M. Zucker, N. Ratli↵, A. D. Dragan, M. Pivtoraiko, M. Klin-
gensmith, C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa,
“Chomp: Covariant hamiltonian optimization for motion plan-
ning,” The International Journal of Robotics Research, vol. 32,
no. 9-10, pp. 1164–1193, 2013.

[7] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow,
J. Pan, S. Patil, K. Goldberg, and P. Abbeel, “Motion plan-
ning with sequential convex optimization and convex collision
checking,” The International Journal of Robotics Research,
vol. 33, no. 9, pp. 1251–1270, 2014.

[8] C. Park, J. Pan, and D. Manocha, “ITOMP: Incremental Tra-
jectory Optimization for Real-Time Replanning in Dynamic
Environments,” 2012.

[9] S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. Konidaris,
“Robot Motion Planning on a Chip,” in Robotics: Science and
Systems, 2016.

[10] T. Kunz, U. Reiser, M. Stilman, and A. Verl, “Real-time path
planning for a robot arm in changing environments,” in 2010
IEEE/RSJ International Conference on Intelligent Robots and
Systems, Oct. 2010, pp. 5906–5911.

[11] K. Hauser, “On responsiveness, safety, and completeness in
real-time motion planning,” Autonomous Robots, vol. 32, no. 1,
pp. 35–48, Jan. 2012.

[12] A. Majumdar and R. Tedrake, “Funnel libraries for real-
time robust feedback motion planning,” arXiv preprint
arXiv:1601.04037, 2016.

[13] S. Kousik, S. Vaskov, F. Bu, M. Johnson-Roberson, and R.
Vasudevan, “Bridging the Gap Between Safety and Real-
Time Performance in Receding-Horizon Trajectory Design for
Mobile Robots,” ArXiv e-prints arXiv:1809.06746, Sep. 2018.

[14] S. Vaskov, S. Kousik, H. Larson, F. Bu, J. R. Ward, S. Worrall,
M. Johnson-Roberson, and R. Vasudevan, “Towards Provably
Not-At-Fault Control of Autonomous Robots in Arbitrary Dy-
namic Environments,” in Proceedings of Robotics: Science and
Systems, FreiburgimBreisgau, Germany, Jun. 2019.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1087090
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1087090
http://www.roboticsproceedings.org/rss08/p27.pdf
http://www.roboticsproceedings.org/rss08/p27.pdf
https://journals.sagepub.com/doi/abs/10.1177/02783640122067453
https://journals.sagepub.com/doi/abs/10.1177/02783640122067453
https://ieeexplore.ieee.org/abstract/document/508439
https://ieeexplore.ieee.org/abstract/document/508439
http://planning.cs.uiuc.edu/
https://journals.sagepub.com/doi/abs/10.1177/0278364913488805
https://journals.sagepub.com/doi/abs/10.1177/0278364913488805
https://journals.sagepub.com/doi/full/10.1177/0278364914528132
https://journals.sagepub.com/doi/full/10.1177/0278364914528132
https://journals.sagepub.com/doi/full/10.1177/0278364914528132
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4705
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4705
https://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4705
https://www.researchgate.net/profile/George_Konidaris2/publication/304532889_Robot_Motion_Planning_on_a_Chip/links/57f6767708ae280dd0bb29e5.pdf
https://ieeexplore.ieee.org/document/5653275
https://ieeexplore.ieee.org/document/5653275
https://link.springer.com/article/10.1007/s10514-011-9254-z
https://link.springer.com/article/10.1007/s10514-011-9254-z
https://www.semanticscholar.org/paper/Funnel-libraries-for-real-time-robust-feedback-Majumdar-Tedrake/927af41a90a72d64521ed0461d2ec9c257990dd7
https://www.semanticscholar.org/paper/Funnel-libraries-for-real-time-robust-feedback-Majumdar-Tedrake/927af41a90a72d64521ed0461d2ec9c257990dd7
https://www.semanticscholar.org/paper/Bridging-the-Gap-Between-Safety-and-Real-Time-in-Kousik-Vaskov/0ce162c5f2c6abd65c863d7a10585a83590711a5
https://www.semanticscholar.org/paper/Bridging-the-Gap-Between-Safety-and-Real-Time-in-Kousik-Vaskov/0ce162c5f2c6abd65c863d7a10585a83590711a5
https://www.semanticscholar.org/paper/Bridging-the-Gap-Between-Safety-and-Real-Time-in-Kousik-Vaskov/0ce162c5f2c6abd65c863d7a10585a83590711a5
http://www.roboticsproceedings.org/rss15/p51.html
http://www.roboticsproceedings.org/rss15/p51.html
http://www.roboticsproceedings.org/rss15/p51.html


[15] S. Kousik, P. Holmes, and R. Vasudevan, “Safe, Aggressive
Quadrotor Flight via Reachability-Based Trajectory Design,”
Dynamic Systems and Control Conference, vol. 3, Oct. 2019,
V003T19A010.

[16] M. Altho↵, A. Giusti, S. B. Liu, and A. Pereira, “E↵ortless
creation of safe robots from modules through self-programming
and self-verification,” Science Robotics, vol. 4, no. 31, 2019.

[17] T. G. A. A. A. Singletary P. Nilsson, “Online Active Safety
for Robotic Manipulators,” in 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Nov.
2019.

[18] S. L. Herbert, M. Chen, S. Han, S. Bansal, J. F. Fisac,
and C. J. Tomlin, “FaSTrack: A modular framework for fast
and guaranteed safe motion planning,” in 2017 IEEE 56th
Annual Conference on Decision and Control (CDC), Dec.
2017, pp. 1517–1522.

[19] M. Chen, S. L. Herbert, M. S. Vashishtha, S. Bansal, and C. J.
Tomlin, “Decomposition of Reachable Sets and Tubes for a
Class of Nonlinear Systems,” IEEE Transactions on Automatic
Control, vol. 63, no. 11, pp. 3675–3688, Nov. 2018.

[20] T. Fraichard and J. J. Ku↵ner, “Guaranteeing motion safety for
robots,” Autonomous Robots, vol. 32, no. 3, pp. 173–175, 2012.

[21] A. Majumdar, A. A. Ahmadi, and R. Tedrake, “Control and
verification of high-dimensional systems with dsos and sdsos
programming,” in 53rd IEEE Conference on Decision and
Control, IEEE, 2014, pp. 394–401.

[22] B. Paden and R. Panja, “Globally asymptotically stable
‘PD+’controller for robot manipulators,” International Journal
of Control, vol. 47, no. 6, pp. 1697–1712, 1988.

[23] A. Giusti and M. Altho↵, “E�cient Computation of Interval-
Arithmetic-Based Robust Controllers for Rigid Robots,” in
2017 First IEEE International Conference on Robotic Com-
puting (IRC), Apr. 2017, pp. 129–135.

[24] A. Girard, “Reachability of uncertain linear systems using
zonotopes,” in International Workshop on Hybrid Systems:
Computation and Control, Springer, 2005, pp. 291–305.

[25] M. Altho↵, “An Introduction to CORA 2015,” in Proc. of the
Workshop on Applied Verification for Continuous and Hybrid
Systems, 2015.

[26] M. Altho↵, “Reachability analysis and its application to the
safety assessment of autonomous cars,” PhD thesis, Technische
Universität München, 2010.

[27] D. Meagher, “Geometric modeling using octree encoding,”
Computer graphics and image processing, vol. 19, no. 2,
pp. 129–147, 1982.

[28] J.-M. Lien and N. M. Amato, “Approximate convex decom-
position of polyhedra,” in Proceedings of the 2007 ACM
symposium on Solid and physical modeling, 2007, pp. 121–131.

[29] L. J. Guibas, A. Nguyen, and L. Zhang, “Zonotopes as bound-
ing volumes,” in Proceedings of the fourteenth annual ACM-
SIAM symposium on Discrete algorithms, Society for Industrial
and Applied Mathematics, 2003, pp. 803–812.

[30] S. Boyd, L. Xiao, and A. Mutapcic, “Subgradient methods,”
lecture notes of EE392o, Stanford University, Autumn Quarter,
vol. 2004, pp. 2004–2005, 2003.

[31] E. Polak, Optimization: algorithms and consistent approxima-
tions. Springer Science & Business Media, 2012, vol. 124.

[32] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich,
“Fetch and freight: Standard platforms for service robot appli-
cations,” in Workshop on Autonomous Mobile Service Robots,
2016.

[33] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J.
Leibs, R. Wheeler, and A. Y. Ng, “ROS: an open-source
Robot Operating System,” in ICRA workshop on open source
software, Kobe, Japan, vol. 3, 2009, p. 5.

[34] D. Coleman, I. A. Sucan, S. Chitta, and N. Correll, “Reducing
the Barrier to Entry of Complex Robotic Software: a MoveIt!
Case Study,” CoRR, vol. abs/1404.3785, 2014.

[35] S. Karaman and E. Frazzoli, “Sampling-based algorithms for
optimal motion planning,” The international journal of robotics
research, vol. 30, no. 7, pp. 846–894, 2011.

[36] A. Wächter and L. T. Biegler, “On the implementation of an
interior-point filter line-search algorithm for large-scale nonlin-
ear programming,” Mathematical programming, vol. 106, no. 1,
pp. 25–57, 2006.

https://asmedigitalcollection.asme.org/DSCC/proceedings/DSCC2019/59162/V003T19A010/1070634
https://asmedigitalcollection.asme.org/DSCC/proceedings/DSCC2019/59162/V003T19A010/1070634
https://robotics.sciencemag.org/content/4/31/eaaw1924
https://robotics.sciencemag.org/content/4/31/eaaw1924
https://robotics.sciencemag.org/content/4/31/eaaw1924
https://vimeo.com/320906655
https://vimeo.com/320906655
https://ieeexplore.ieee.org/abstract/document/8263867
https://ieeexplore.ieee.org/abstract/document/8263867
https://ieeexplore.ieee.org/abstract/document/8267187
https://ieeexplore.ieee.org/abstract/document/8267187
https://www.tandfonline.com/doi/abs/10.1080/00207178808906130
https://www.tandfonline.com/doi/abs/10.1080/00207178808906130
https://ieeexplore.ieee.org/document/7926528
https://ieeexplore.ieee.org/document/7926528
https://tumcps.github.io/CORA/
https://mediatum.ub.tum.de/doc/963752/document.pdf
https://mediatum.ub.tum.de/doc/963752/document.pdf
https://www.sciencedirect.com/science/article/pii/0146664X82901046
https://dl.acm.org/doi/abs/10.1145/1236246.1236265
https://dl.acm.org/doi/abs/10.1145/1236246.1236265
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.178.2631&rep=rep1&type=pdf
https://www.springer.com/gp/book/9780387949710
https://www.springer.com/gp/book/9780387949710
https://fetchrobotics.com/wp-content/uploads/2018/04/Fetch-and-Freight-Workshop-Paper.pdf
https://fetchrobotics.com/wp-content/uploads/2018/04/Fetch-and-Freight-Workshop-Paper.pdf
https://www.ros.org/
https://www.ros.org/
https://arxiv.org/abs/1404.3785
https://arxiv.org/abs/1404.3785
https://arxiv.org/abs/1404.3785
https://arxiv.org/abs/1105.1186
https://arxiv.org/abs/1105.1186
https://link.springer.com/article/10.1007/s10107-004-0559-y
https://link.springer.com/article/10.1007/s10107-004-0559-y
https://link.springer.com/article/10.1007/s10107-004-0559-y

	Introduction
	Contributions
	Notation

	Arm, Obstacles, and Trajectory Parameters
	Arm and Obstacles
	Arm
	Obstacles

	Receding-Horizon Planning and Timing
	Trajectory Parameterization
	Theory
	Implementation


	Offline Reachability Analysis
	Theory
	Implementation


	Online Planning
	Reachable Set Construction
	Theory
	Implementation

	Constraint Generation
	Theory
	Implementation

	Trajectory Optimization
	Theory
	Implementation


	Demonstrations
	Implementation Details
	Manipulator
	Comparison
	High-level Planner
	Algorithm Implementation
	Hyperparameters

	Simulations
	Setup
	Results

	Hardware

	Conclusion
	Appendix A: Proofs
	Appendix B: Safe Receding-Horizon Planning
	Appendix C: Self-Intersection Constraints
	Appendix D: Additional Explanations
	Forward Occupancy Example
	Slicing
	Matrix Zonotope Example
	Reduction of Generators
	Hard Scenarios
	Design Choices and Hyperparameters
	Seeding CHOMP with RRT*


